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Received 15 December 1975 

Abstract. Introducing generalized Mehler and Fourier transforms, we extend the Funk- 
Hecke theorem to the case of non-compact O(1,f) groups, and we give the exact 
expressions for the energy spectrum and the wavefunctions of the Schrijdinger equation 
with non-local O(1, f )  symmetric potentials in the scattering region. 

1. Introduction 

Non-local potentials in the Schrodinger equation have been the subject of considerable 
investigation because of their phenomenological interest in nuclear and in atomic 
physics (Yamaguchi 1954, Perey and Buck 1962, Arnold and Mackellar 1971, Ali et al 
1974), as well as because of their theoretical interest in nuclear theory (Wheeler 1937, 
Bethe 1956, Zohni 1973) and in connection with the extension of the results of local 
potentials (Gourdin and Martin 1957, 1958, Bertero et al 1968a, b, Gutkowski and 
Scalia 1968,1969, Yao Hai Te 1973,1974, Ahmad 1974). Because of the mathemati- 
cal difficulties of the problem, non-local potentials of separable form and their simple 
generalizations are usually considered in order to obtain exact solutions of the 
Schrodinger equation. Another way to reduce the mathematical difficulties and obtain 
again exact solutions for the energy and the wavefunctions, in both the bound-state 
region and the scattering region, is to introduce symmetry into the problem. 

Having exact solutions we may check the physical content of the potential, compare 
with local potentials, fit experimental data and possibly check conclusions of general 
properties of such potentials. For example the spectrum gives an analytic expression of 
the Regge trajectory, which determines the analytic structure of the S matrix in the 
complex angular momentum plane. 

The most interesting case for which the Schrodinger equation has dynamical 
symmetry is the Coulomb potential (Pauli 1926, Fock 1935, Bargmann 1936, Bander 
and Itzykson 1966a, b). Generalization to systems with the same symmetry leads 
necessarily to non-local potentials, which have been investigated in the bound-state 
region (Luming and Predazzi 1966a, b). In this paper we investigate the problem of 
O( 1, f )  symmetric non-local potentials in the scattering region where f = 2,3,4, . . . . 
The investigation of the scattering problem is interesting from the physical as well as 
from the mathematical point of view. Indeed we are led to the introduction of 
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generalized Mehler and Fourier transforms and to an extension of the known Funk- 
Hecke theorem for the compact 0(1+ f )  groups, to the case of the non-compact groups 

In Q 2 we review the stereographic projection of the f-dimensional Schrodinger 
equation in momentum space on the surface of an (f+ 1)-dimensional unit sphere for 
negative energies (Fock 1935, Luming and Predazzi 1966a, b, Kyriakopoulos 1968). 
Also in the case of positive energy we project on the surface of a unit two-sheeted 
hyperboloid in f +  1 dimensions. In 0 3 we review the properties of the O(1, f )  
harmonics (Bander and Itzykson 1966a, b). In Q 4  we investigate the generalized 
Mehler and Fourier transforms. In 0 5  we establish the Funk-Hecke theorem for 
O(1, f )  groups. Finally, in Q 6 we solve exactly the Schrodinger equation in the 
scattering region, giving the analytic expressions for the energy spectrum and the 
wave functions. 

O(1 , f ) .  

2. Fock transformation 

The Schrodinger equation in the f-dimensional momentum space, for an arbitrary 
potential, which is in general non-local and energy dependent is 

( p 2 -  2 F E ) W )  = $ j dfqV& q ) @ ( q ) ,  

v ~ ( p ,  4 )  = 7 /dfx jdfX’ eXp[i(-pX +qX’) /h]  VE(X, X’) 

(2 .1 )  

where 
1 

(2.2) ( 2 r )  
and V,(X,X‘) is the potential in position space. In the bound-state region we have 
E < 0. Changing variables from p to ( - 2 ~ E ) - ’ / ~ p  and letting 

@[(-2PE)’ /2Pl  = W P )  (2.3) 

V!d(-2@)1/2p, ( - 2 @ ) ’ / 2 q l =  91, (2.4) 

equation (2.1) becomes 

To project the f-dimensional space on the surface of an (f + 1)-dimensional unit sphere 
we introduce the Fock variables 

U:+ u2 = 1 .  p 2 -  1 2P 
U=-, 

P + 1  
U -- 
O-p2+1’ 

In these variables equation ( 2 . 5 )  becomes 

where 
+(U) = (1 - uo)-Cf+1)/2*(p), 

(2 .7 )  

and the integration in equation (2 .7)  takesplace on the whole surface of the unit sphere. 
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O(l+f) symmetry of expression (2.7) requires &(U, U )  to be a function of the 
Euclidean scalar product uu = cos U, in which case the Hermiticity of the Hamiltonian 
expressed by v*,(p, q )  = &(-q, - p ) ,  demands FE(u, U )  to be real. 

In this case the solution of equation (2.7) is known (Luming and Predazzi 1966a, b). 
If ( F ~ ( C O S  o)l and }FE(cos of are Lebesque-integrable for -1 ccos o c 1 the eigen- 
functions are the cf + 1)-dimensional spherical harmonics Yn,,Ii2(u)l of degree n, and 
the spectrum is (ErdClyi et a1 1953, vol 2, pp 247-8) 

x(sin U)’-* d(cos U ) .  (2.10) 

@[(2FW%l = WP), (2.11) 

VE[(2@)1/2P, (2@E)1/2qI= UE(p, 9). (2.12) 

In the scattering region we have E > 0. We change variables from p to (2pE)-’”p 
and define 

In this case equation (2.1) takes the form 

The above equation in the Fock variables 

2 2  
U o - U  = I  1 + p 2  U=- 2P MO=- 

1 - p 2 ’  1 -p2’  

takes the form 

(2.13) 

(2.14) 

(2.15) 

where 

@(U) = 11 + uoI-+v+l) * ( p ) ,  (2.16) 

1 if uo>O 
if uo<O (2.17) 

(2.18) 

(2.19) 

and the integration takes place on both sheets of the unit hyperboloid in the cf+  1)- 
dimensional space. Equation (2.15) is 0(1, f) symmetric if and only if the ‘potential’ 
F E ( &  U) is a function of the Minkowski scalar product uu = uouo- U . U = cosh 6, 
O S  8 < +W. Hermiticity of the Hamiltonian requires FE(cosh 0) to be real. 

3. ‘Spherical harmonics’ on the hyperboloid 

Let Tf+,l(7’&l) be the upper (lower) sheet of the hyperboloid q+l. 
2 uo- uiu, = 1, i = 1 , 2 .  . . f. (3.1) 
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It is known (Bander and Itzykson 1966b) that the Hilbert space of square integrable 
functions defined on G+, is the carrier space of a reducible unitary representation 

of the component of the identity of the group O(1,f). The spherical functions 

form a complete set of functions for the carrier space of the representation, where the 
real and positive arameter N classifies the irreducible representations of the group. 

Z%:u(8) are defined by 
The functions Y,,,(n) 8 are the f-dimensional spherical harmonics and the functions 

d fV- l )+a 
Z%:,(8) = {;*N2(N2 + 12) . . . [N2+ (f- 1 + a)2]}-'/2(sinh 0)" (-) cos N8 d cosh 8 

(3.3) 
for f odd (f a 3), 

[N2+(i)2][N2+(q)2] . . . {  N2+i[(f-2)+a-' 21 -1/2 I) (sinh 8)" N tanh ITN 
(3.4) 

forf even (fa 2), and PiN-h(cosh 8) are the conical functions (ErdClyi er a1 1953, vol 1). 

1966b) 
The spherical functions satisfy the orthogonality relations (Bander and Itzykson 

and the completeness relation on the carrier space 

Also these functions satisfy the addition theorems (Bander and Itzykson 1966b) 

for f even, and 

forf odd. The functions PiN-l(cosh 8) are the regular, at cosh 8 = 1, conical functions, 
with PiN-i (1) = 1. 

4. Generalized Mehler and Fourier transforms 

To generalize the Funk-Hecke theorem (ErdClyi et a1 1953) for O(1,f) groups we 
introduce generalized Mehler and Fourier transforms for the cases f even and f odd 
respectively. 
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4.1. f even 

Consider the class of functions F(cosh e) for which there exist an F ( N )  such that 

which we call generalized Mehler transform. The conical functions PiN-j (cosh e) satisfy 
the relations 

~ N P ~ N - ~ ( X I ) P ~ N - ~ ( X ~ ) N  tanh VN= 6(X1-X2), (4.2) 

To invert equation (4.1) and calculate F(N)  we consider the functions 

p = o ,  1 , 2 , .  .., d P  
T ~ ( N ,  e) = (sinh e).(-) PiN-i(cosh e), 

d cosh 8 (4.4) 

which satisfy the orthogonality relations (Bander and Itzykson 1966b) 

6" N2) 

N1 tanh d V 1 '  
d e  sinh eTp(N1, O ) T ~ ( N ~ ,  e) = A(N1, p )  

(4.5) 
A ( N , p ) = [ N 2 + ( i ) 2 ] [ N 2 + ( $ ) 2 ] .  . . [ N 2 + ( p - i ) 2 ] .  

From equations (4.1) and (4.5) we get 

The correspondence between the functions F(cosh 0) and $ ( N )  is one to one if by 
replacing R(N)  in the right-hand side of equation (4.1) by its expression (4.6) we get 
back the function F(cosh e). This replacement gives 

It is easy to prove that the functions TJN, 0) satisfy the relations 

p = l , 2 ,  ..., (4.8) e)PTp(N3 e) = -(sinh e)P-'7p-l(N, e) 
d a s h 8  N + ( P - ; ) ~  

from which we get 

(sinh f3)pTp(N, 6) = (-l)p~o(N, e). 

The solution of the differential equation 

ICl 'k ' (X)  = f ( x ) ,  @(O) = @yo) = . . . = @(k-l)(o) = 0 

(4.9) 

(4.10) 
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is 

Therefore we get from equation (4.9) 

(sinh 0)'7,(N, e)  =- (-')' I," d( sinh t(cosh 8 -cosh ()p-'70(N, 5) 1 
N N ,  P )  (P - I)! 

p = l , 2 , 3  ) . . . .  
From equations (4.2), (4.4) and (4.12) we get 

(4.11) 

(4.12) 

=- (-'Im (sinh e')-"(cosh 8'-cosh O)"-'H(cosh 8'- cosh e), 
(m - l ) !  

m = l , 2 , 3  , . . . ,  (4.13) 

where H(x - $) = 1 if x > JI and H(x - $) = 0 if x < 4. Introducing (4.13) in expression 
(4.7) and using the relation 

(cosh @-cosh B)P-'H(cosh @-cosh e ) =  (-1)'(p- l)!S(cosh O'-cOSh e)  (A)p 
(4.14) 

we easily find that expression (4.7) becomes F(cosh e).  For f = 2, corresponding to 
m = 0, the one-to-one correspondence between the functions F(cosh e)  and F ( N )  is 
easily proven with the help of equations (4.2) and (4.3). Thus our proof is completed. 

4.2. f odd 

In this case we introduce the transform 

d '  W 

F(cosh e )  = Bf lo d N g ( N )  (-) cos NO, 
d cosh 8 

To invert the above equation we define the functions 

d P  
qp (N, e) = (sinh 6)' (-) cos Ne, p = o ,  1 , 2 , .  . . 

dcosh8  

(4.15) 

(4.16) 

for which we have (Bander and Itzykson 1966b) 
.a 

M(N,  p )  = N2(N2  + 12)(N2 + 22) . . . [N2  + ( p  - 1)2], 

) = -(sinh 8)p-2qp-1(N, e), (4.18) 
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and also qp(N, 0) = 0 if p 3 1. From equation (4.18) we get 

(4.19) L(-) d P  [(sinh e)'-' qp(N, e)] = ( - 1 ) ' k .  (N,  6) 
M(N, p) d cosh 8 

In analogy to the case f even we obtain from equation (4.19) 
e 

(sinh 8)P-'qp(N, 8) = - d&(cosh 8 -cosh ,$)p-'qo(N, 5) 1 
M(N,  P) 

p = l , 2 , 3  ) . . . .  (4.20) 

From equations (4.15) and (4.17) we get 

d '  m 

d8(sinh 8)2'F(cosh 6) (-) cos NO. 
2 

d cosh 8 
R ( N )  = (4.21) 

Introducing the expression (4.21) in the right-hand side of equation (4.15) and 
proceeding as in the case off even we establish the one-to-one correspondence between 
the functions F(cosh 8) and $(N). 

We want to find the conditions under which the transform F ( N )  exists. Consider 
first the case f even. Suppose that the function 

d "  
f(cosh 8) = (-) [(sinh 8)2mF(cosh e)] 

d cosh 8 

satisfies the conditions: 

(ii) it is a function of bounded variation for 8 in the interval 0 s 8 s 00, under which it has 
a Mehler transform (Robin 1959) 

Q3 

(4.22) d "  (G) [(sinh 8)2"F(cosh e)] = dNf(N)To(N, 8)N tanh vN, 
0 

where T ~ ( N ,  8) = PiN-t(cosh 8). Also we assume that 

(iii) (&)k[(sinh 8)2"F(cosh 8)]le=o= 0, k = 0 , 1 , 2 , .  . . m-1. 

(4.23) 
Using equations (4.22) and (4.23) we shall prove the existence of the transform (4.1). 
Indeed from equations (4.10), (4.11), (4.22) and (4.23) we get 

(sinh 8)2"F(cosh 8) = 
l e  

dNf(N)N tanh .nN- J d t s i n h t  
(4.24) 

Defining the function R(N)  = (-l)"f(N)/AfA(N, m) and using equation (4.12) the 
above equation becomes the transform (4.1). Thus we see that conditions (i), (ii) and 
(iii) are sufficient for the existence of the transform (4.1) and its inverse, establishing in 
this way a one-to-one correspondence between the set of functions which have the 

Jo* (m-l)!  

x ( a s h  8-cosh 5)"-'PiN-f(cosh 5). 
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generalized Mehler transform of equation (4.1), and the set of functions which have the 
usual Mehler transform. 

Consider now the case f odd. The functions sinh 8(d/dcosh 8)' 
x [(sinh 8)z'-1 F(cosh e) ]  have cosine Fourier transform if they are absolutely integra- 
ble in the interval 0 S 8 < 03. Then we write 

m d '  
sinh e(  -) [(sinh 8)2'-1F(cosh e) ]  = 5 dNf(N)q0(N, e) ,  (4.25) 

d cosh 8 0 

where qo(N, 8 )  = cos NO. Also we assume that 

d k  sinh e(-) [(sinh O)"-'F(cosh 8)]le-o = 0, 
d cosh 8 

k = 0 , 1 , 2  ,,,, I - 1 .  (4.26) 

We shall prove that these are sufficient conditions for the existence of the transform 
(4.15) and its uniform convergence. From equations (4.10), (4.11), (4.25) and (4.26) we 
get 

l e  m 

(sinh B)*'-'F(cosh 8 )  = jo dNf(N)m Io dt(cosh 8-cosh 5)'-'qo(N, 5). (4.27) 

Using equation (4.20) we get the transform (4.15) where F ( N )  = (-l)y(N)/B,M(N, I). 
Therefore the transform (4.15) exists if the left-hand side of equation (4.25) is 
absolutely integrable and conditions (4.26) are satisfied. 

5. Generalized Funk-Hecke theorem 

We shall establish the Funk-Hecke theorem for 0(1,  f )  groups first on the upper sheet 
of the unit hyperboloid Tf+, and then on both sheets. 

5.1. Upper sheet 

Fromequations (3.7) and (4.1) forfevenorequations (3.8) and (4.15) forf odd we get 

m 

F(cosh 8 )  = I, d N ~ ( N ) { Z U , B H ~ ~ ( U 1 ) [ H ~ ~ ( U Z ) 1 * } ,  (5.1) 

where F ( N )  is given by equations (4.6) for f even and (4.21) for f odd. From equation 
(5.1) and the orthogonality relations (3.5) we obtain the generalized Funk-Hecke 
theorem on the upper sheet of the unit hyperboloid 

where ulu2 = cosh 8, and the measure on the upper sheet of the hyperboloid is 
d'p(u) = H( ~0)2S( U *  - l)d'+'u. 
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5.2. Both sheets 
Let hN,,,@(u) be a function defined on the whole hyperboloid Tf+l= TA1 U Tf+1 by 

(5.3) 

We can extend the Funk-Hecke theorem on both sheets if both transforms, F ( N )  of 
F(cosh 6 )  and e(N) of F(-cosh 0) exist. We shall compute the integral 

Using (5.3) we get 

and 

(5.4) 

where the measure on the lower sheet of the hyperboloid is d'p(u)= 
H(-uo)26(u2- l)d'+'u. From equations (5.4) and (5 .5 )  we obtain 

(RN) + Ch(N))hN,a,p(U1) if u1 E T,+,, 
if u1 E TGl' df/L(U2)F(U1 UZ)hN.a,@ (u2) = { ( F ( N )  + c-'e(N))hN,a,B(Ul) 

JTf+l (5.6) 

To get a Funk-Hecke theorEm we must fix the constant factor C by the relation 
$(N)+C6(N)=E(N)+C-'G(N) which gives C=*l. Therefore we get 

(5.9) 

6. Schriidinger equation for scattering 

We want to solve the Schrodinger equation (2.15) if the potential &(U13 u2) has O(1, f )  
symmetry. To obtain an equation of this form we must impose on equation (5.6) the 
condition 

&(N) + c E & E ( N )  = -(FE(N) f ci16E(N)), (6.1) 

because of the presence of the factor E(u~) in equation (2.15). Therefore we find 
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(6.4) 

and Fg(uu) = *FE(uu). Comparing equations (2.15) and (6.3) we get the equation 

from which the energy spectrum E = E ( N )  will be determined. 

dimensions. In this case we have equation (2.1) with 
As an example we consider the Schrodinger equation with Coulomb potential in f 

and we get 

From equation (5.2) and the integral equation (Bander and Itzykson 1966b) 

the expressions FE(N)  and GE(N) can be obtained. 
(6.8) we get respectively 

h2 (f-’)/’ coshITN 
2CLE N sinh TN’ 

&(N)  = e’(-) 

From equations (6.5)’ (6.9) and (6.10) we find 
spectrum 

pe2 1 
2ii N 

E = y 7 .  
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